Trefftz finite element methods

Over the last years, finite element methods based on operator-adapted approximating spaces have been developed in order to better reproduce physical properties of the analytical solutions, and to enhance stability and approximation properties. They are based on incorporating a priori knowledge about the problem into the local approximating spaces, by using trial and/or test spaces locally spanned by functions belonging to the kernel of the differential operator (Trefftz spaces). These methods are particularly popular for wave problems in frequency domain. Here, the use of oscillating basis functions allows to improve the accuracy vs. computational cost, with respect to standard polynomial finite element methods, and breaks the strong requirements on number of degrees of freedom per wavelength to ensure stability.

In this talk, the basic principles of Trefftz finite element methods for time-harmonic wave problems will be presented. Trefftz methods differ from each other by the way interelement continuity conditions are imposed. We will focus on discontinuous Galerkin approaches, where the approximating spaces are made of completely discontinuous Trefftz spaces, and on the recent virtual element framework.