Moduli spaces of parabolic vector bundles on the projective line

We will introduce moduli spaces of semistable parabolic vector bundles over the complex projective line with $n$ marked points. Our goal is to determine and give a modular interpretation for their automorphism group. To construct these moduli spaces we need a notion of slope stability which depends on a set of weights assigned to the parabolic flags, and different choices of weights yield different moduli spaces. For instance, the moduli space corresponding to the central weight is a Fano variety of dimension $n-3$, it is a small modification of the blowup of $P^n$ at $n-3$ general points. This is a joint work with Carolina Araujo, Inder Kaur and Alex Massarenti.

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

Nous profiterons du premier séminaire de la rentrée pour présenter les 3 nouveaux membres de l'équipe : Zhining Liu (doctorant), Titouan Serandour (doctorant), Ruben Edwin Lizarbe Monje (postdoc)